
Abstract — Especially in the context of large scale problems 

and massively parallel computing, the most desirable property 

of the multigrid approaches is its potential for algorithmic 

scalability. So, the need to solve linear systems arising from 

problems posed on extremely large, unstructured grids has 

been generating great interest in parallelizing algebraic 

multigrid. However, the current approaches have some 

limitation, mainly regarding the coarsening process in setup 

phase. This paper presents a new parallel algebraic multigrid 

through lifting technique that eliminates the grid coarsening 

process simplifying its implementation on distributed memory 

machines. The method is used as a parallel black box solver in 

some numerical problems concerning to circuit simulation 

matrices. 

I. INTRODUCTION 

Although its efficiency for solving large sparse linear 

systems of algebraic equations arising from irregular 

domains and unstructured meshes, the use of algebraic 

multigrid method (AMG) presents some drawbacks, 

especially regarding to the coarsening process. The 

traditional coarsening scheme can lead to computational 

complexity growth as the problem size increases, resulting 

in an elevated memory use and execution time, and in a 

reduced scalability [1]. Moreover, the coarsening process is 

inherently sequential in nature that makes difficult the 

implementation on distributed memory machines [2]. 

Over the last few years, several works have exploited 

the similarities between the multigrid methods and wavelets 

trying to overcome these difficulties. The use of the discrete 

wavelet transform in the construction of the matrices 

hierarchy and the transfer operators in the AMG method 

was proposed by these authors in [3], producing a new 

method called WAMG that eliminates the standard 

coarsening process. A parallel version was also proposed 

[4], but despite the ease of implementation, it still presented 

some difficulties related to the size of the column vectors in 

each processor, which should be equal to 2
k
, k in Z. 

The method has revealed to be very efficient and 

promising for several problems related to the computation 

of electromagnetic fields and, consequently, further 

researches have been carried out for its improvement [5]-

[6]. One of those works was presented recently in [6] which 

proposed the use of the lifting scheme [7] to accomplish the 

wavelet transform in the multigrid. The lifting technique has 

some numerical advantages in relation to the standard 

wavelet transform, as a reduced number of floating point 

operations and, especially, the capacity of transforming 

signals (vectors) with an arbitrary length (need not be 2
k
), 

which is very appropriate in the WAMG context and allows 

us to solve the difficult of the parallel algorithm. This next 

natural step is presented in this paper. 

II. WAVELET TRANSFORM AND THE LIFTING TECHNIQUE 

The standard discrete wavelet transform (dwt) 

corresponds to the application of low-pass and high-pass 

filters, followed by the elimination of one out of two 

samples (decimation or sub sampling). The discrete signal, 

which in one dimension is represented by a vector of values, 

is filtered by a set of digital filters that are associated to the 

wavelet adopted in the analysis. Then, starting from a vector 

( )y N  at level 0, two sets of coefficients are generated in 

each level l of the process: a set ld  of wavelets coefficients 

(detail coefficients) and a set lc  of approximation 

coefficients. This procedure can be applied again, now 

using lc  as an input vector to create new coefficients 1lc
+

 

and 1ld
+

, and so on. 

In 2-D case, the dwt is obtained through the application 

of successive steps of this 1-D transform into the rows and 

columns of the matrix. In both cases, one and two 

dimensions, the approximation coefficients keep the most 

important information of the discrete signal, whereas the 

detail coefficients possess very small values, next to zero. 

In [7] Sweldens has shown that every wavelet filter can 

be decomposed into lifting steps. Some advantages of this 

technique over the classical wavelet transform are:  

a) Smaller memory;  

b) Efficiency: reduced number of floating point 

operations);  

c) Parallelism: inherently parallel feature; 

d) Transforms signals with an arbitrary length: need 

not be 2
k
. 

The representations of the Daubechies 2 wavelets in the 

lifting form are presented in equation (1) [8] 
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The coefficients cl+1[n] and dl+1 [n] in (1) are, respectively, 

the approximation and the detail coefficients, at level l+1, of 

the input signal.  
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III. THE ALGEBRAIC MULTIGRID THROUGH LIFTING 

TECHNIQUE 

The key point of the proposed method is the application 

of an incomplete lifting transform to generate the hierarchy 

of matrices in the algebraic multigrid. The approximation 

coefficients keep the most important information of the 

discrete signal, which is essentially a low resolution version 

of the signal and represent a coarse version of the original 

data. So, the procedure defined by first tree equations in (1) 

can be used as an algebraic restriction operator in the 

multigrid context. The prolongation operator is defined 

using the inverse lifting transform, which is easy to find and 

it has exactly the same complexity as the forward transform, 

and the coarse matrix is calculated applying the procedure 

in (1) on the rows and columns of the original matrix [8]. 

IV. THE PARALLEL ALGORITHM USING LIFTING 

The parallelization strategy starts dividing equally the 

rows of the matrix among the processors, in such a way that 

the 1-D transform defined in (1) may be applied efficiently 

in the rows. As the lifting allows transforming signals with 

an arbitrary length, the transform also can be applied in the 

part of the columns in each processor without any 

communication. It means the resulting coarse matrix will be 

calculated entirely locally. 

In the solver phase the communications among 

processors are necessary only for operations involving 

matrices. This task is accomplished by using the MPI 

collective communication function MPI_Allgather [9]. 

V. THE NUMERICAL RESULTS 

The parallel algorithm uses the version one of the 

Message Passing Interface (MPI) that provides a standard 

for message passing for parallel computers and workstation 

clusters. The method has been implemented using in C++ 

and tested in a homogeneous Beowulf cluster with 5 

machine nodes (Core 2 Duo, 2Gb RAM) connected to the 

switch with fast Ethernet network. 

A hybrid Jacobi-Gauss method was used as smoother 

and the V(1,0)-cycle was applied as a resolution scheme to 

solve two systems of linear equations with circuit 

simulations matrices from [10] (Table I). 

TABLE I 

CHARACTERISTICS OF TEST MATRICES. THE DIMENSION OF 

THE PROBLEM IS NN AND THE NUMBER OF NONZERO IS NNZ 

Matrices NN NNZ 
trans4 116835 749800 
trans5 116835 749800 

The results are presented in Table II. In all cases, the 

convergence is defined by ||r
n
||/||b|| < 10

-4
, where r

n
 is the 

residual vector at the nth iteration and the right hand side 

vector b is chosen so that the solution is a unitary vector. 

The results report only the CPU time, which is fair once 

processes that are waiting for synchronization are still 

consuming full CPU-time. Moreover, as there is no 

interprocessor communications in the setup phase, the CPU-

time and the wall clock time are the same. 

TABLE II 

NUMERICAL RESULTS FOR SETUP TIME (tm), SOLVER TIME (ts) 

AND NUMBER OF ITERATIONS (n) 

Problem 

Sequential Parallel Method 

ILU and 

BiCGSta

b 

Lifting 

AMG 2 3 4 5  

trans4 901.3 

235.1 

11 

30.3 

356.6 

26 

15.6 

311.2 

2 

12.9 

314.2 

2 

11.9 

310.7 

2 

11.5 

311.7 

2 

tm 

ts 

n 

trans5 784.2 

1941.7 

56 

30.3 

171.4 

134 

15.6 

303.6 

2 

12.9 

375.4 

2 

12.0 

482.6 

2 

11.5 

460.1 

2 

tm 

ts  

n 

VI. CONCLUSIONS AND COMMENTS 

The parallel algorithm uses a hybrid Jacobi gauss-seidel 

smoother that has not been reproduced in the sequential 

version of the method. This can help us explain the 

difference in the number of iterations. A possible influence 

of the coarse grid systems dimensions in each processor 

also should be investigated and it will be discussed in the 

full paper. 

On the other hand, the fast Ethernet network shows to be 

an important bottleneck, which was aggravated by the load 

unbalance (test matrices has a large number of nonzero 

elements in the first rows). A new way to divide the matrix 

among the processors is under investigation. 
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